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Abstract. We consider the nonlinear diffusion equation u, = V(u -"Vu) for dimension N - 2 in the cases n > 1, N = 2
and n - 1, N - 3 in which there are no finite mass solutions. We concentrate on the physically motivated case of a
small but non-zero background concentration, using asymptotic methods to analyse the limit in which this
background concentration goes to zero.

1. Introduction

This paper is largely concerned with the very widely studied nonlinear diffusion equation

a- =V.(u -Vu), X EN (1.1)

subject to conditions

as xl-o u-E, (1.2)
at t = 0 u = I(x) + E ,

where the constant is the background concentration and where

fI I(x) dV

is bounded. In the case of zero background concentration the total mass is therefore
bounded; however, it is known ([1]) that (1.1) with N 2 possesses finite mass solutions in
RN only for n < 1 when N = 2 and for n < 1 when N a 3. Here we discuss the cases in which
n lies outside these ranges and we incorporate a non-zero, but small, background
concentration. We are motivated by, for example, the diffusion of impurities into semi-
conductors, these conditions being appropriate because the bulk semiconductor will never be
completely pure. The non-existence of finite mass solution results from the singular
behaviour of the diffusivity D(u) = u- n in the limit u---> 0. The introduction of a non-zero 
may thus also be viewed as regularising the diffusivity; introducing c = u - E we are seeking
finite mass solutions for c corresponding to a diffusivity D(c) = (c + e)-n. The corresponding
one-dimensional problem has been discussed in [2]; here we extend these results by
determining the asymptotic structure of the solution to (1.1) and (1.2) as E---> 0+ for N 2
with n in the range for which there is no solution when = 0. The approach we adopt is one
of formal asymptotics based on the method of matched asymptotic expansions.

The equation (1.1) has a large number of applications in the relevant parameter ranges.
Some are mentioned in [2]; another well-known example is that of diffusion of plasma where
the case n = 1 can occur [3].
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We shall begin with the case N > 2, n > 1 and then discuss the two borderline cases N > 2,
n = 1 and N = 2, n > 1. For simplicity we largely restrict attention to the radially-symmetric
problem

au 1 a N- -n au
at rN - 1 ar r u -

N-1 -n auatr=O r u =O,

as r-> o u- e,

att=O u = I(r) + ,

(1.3)

though in Section 5 we summarise the corresponding results for the non-radially-symmetric
problem. For physical reasons we assume that I(r) has finite mass, and define

Q = r N-(u(r, t) - e) dr, (1.4)

which is then independent of t. It turns out that for N >2 another important constraint
involves the first moment

M(t) = f r(u(r, t) - ) dr, (1.5)

which we also assume to be bounded at t = 0. It follows from the results of [4] that

dM (N - 2)1, (1.6)
dt (n- 1) [e -ul-(o6t)] n'1)

dM
dt = -(N - 2)[ln(l/e) + In u(O, t), n = 1 . (1.7)

For N = 2, expressions (1.4) and (1.5) represent the same quantity and we introduce

L(t) = o r In r (u(r, t) - E) dr (1.8)

which satisfies

dL 1 1n

dt n - 1 [E 1-u -n (0, t)], n 1, N= 2.9)

In the Appendices 1 and 2 we briefly discuss two other initial-boundary value problems for
(1.1), which are also of physical relevance and for which the asymptotic structure is closely
related to that which we derive for the conditions (1.2). Appendix 1 discusses diffusion in a
finite domain; the one-dimensional version of this problem was analysed in [2]. This provides
an alternative approach to ensuring that (1.1) possesses a solution (in this case (1.1) has
finite mass solutions for any n) and is the appropriate problem physically when the finite size
of the domain is more significant than the background concentration in controlling the rate
of redistribution. Appendix 2 discusses the problem of nonlinear sorption.
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2. N>2, n>l1

In this section we discuss (1.3) in the parameter range N > 2, n > 1 and in the limit E -- 0+ .

The analysis has a number of features in common with that of the one-dimensional problem
discussed in [2], but there are also a number of important differences.

The redistribution occurs on a short timescale t = vT where v 1 is to be determined.
Hence

u v 0 [aN-1 -,u (2.1)
dT rN-l rt u dr

and it turns out that the resulting asymptotic structure has four regions; a transition layer
occurs around

r = s(T; v),

where s has to be determined by matching, and we write

s(T; ) - s(T) as v---> 0.

The regions are as follows.
(1) r<so(T).

This is a high concentration region;

u I(r) (2.2)

follows from (2.1).
(2) r = s(T; v) + vz.

The leading order behaviour in this region is governed by

-so(uo - I(s°)) = u° ad' (2.3)

with so = dso/dT, and where we have matched with (2.2). It follows from (2.3) that

u0, [-(n - )I(so)sZ]- / (n-
1) as z-- +oo; (2.4)

we note that sd < O.
(3) r > s(T).

It follows from (2.4) that we should write

U = 1l/(n-1)O .

Because we require u-->,E as r-oo this implies that we should take

n-1
v-e

Hence

aqP 1 [r N-( (2.5)
T r N - 1 Or r Or
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so imposing

as r -so fPox- + ,} (2.6)
as r - oo --, -1 ,

we obtain at leading order

qpo = [1 - (r/s)-(N-2)]- (n-l) . (2.7)

Matching with (2.4) then implies that

(N-2) (2.8)
s°(so)s° - (n - 1) '

so that so is determined by

ffrI(r)dr= N2 T. (2.9)
S r(r) dr (n - 1r

The expression (2.9) is easily shown to be consistent with (1.6).

(4) r = O( -1/2).
The algebraic decay associated with (2.7) is not consistent with the observation that the

behaviour of the solution to (1.3) must be governed by linear diffusion when u is close to E,
so that a further region is needed. To get a diffusive balance it follows from (2.5) and (2.7)
that we should write

r = e-1/2 R , = 1 + E(N-2)/2qp

and on matching with (2.7) we obtain the linear leading order problem

a0o _ 1 d l[RN-1 R0
aT -RN- 1 [R AR I '

as R->O+ 0 (n i) [R/So]-(N-2 )

as R - -> 0 ,

at T=fl =f ( 1/
.. - 0 \ ... !

It follows from (2.10) that

d rN-l (N- 2 )SN2T)d RN- io(R, T) dR = (- _ ) SN-2 (T),
-foI 0 (R T)dR (n - 1) 

and hence from (2.8) that

f RN-l'(R, T) dR =rN r lI(r)dr,

which is a leading order expression for conservation of mass. Hence the mass which is lost
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Fig. 1. Schematic of asymptotic structure of solution to (1.3).
T=0 (0) u = I(r).
0 < T < T, (1) r < so(T ) (2.2); (2) r = s(T; v) + vz (2.3);

(3) r>so(T) (2.7); (4) r=e- 2 R (2.10).

from region (1) as the front so(T) moves inwards makes its appearance in region (4). The
asymptotic structure is shown schematically in Fig. 1.

We now discuss the behaviour close to the extinction time, T= Tc, of the high
concentration region (1), T being defined by

s(T,; ) 0,

with

so(Too) = O.

It follows from (2.9) that

(n-1) f0T° = (N 2)I rl(r) dr,

so that T,, depends on the initial conditions only through their first moment, and that

(n- [ )(2(N - 2) (T c - T)]1 as T-- T (2.11)

It is clear from (2.3) that the lengthscale of variation in the transition region (2) is
proportional to 1/O, so that the transition region becomes narrower and narrower as
T- T. Although, in contrast to the one-dimensional case discussed in [2], it appears that
the thicknesses of regions (1) and (2) do not become comparable (both are proportional to
(TCo - T)'/ 2 as T-- T-), the asymptotic structure outlined above in fact breaks down on
timescales on which T- Tc is exponentially small. These intermediate asymptotic timescales
are discussed in Appendix 3.
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At T= T the high concentration regions (1) and (2) disappear and the conditions (2.6) in
region (3) are replaced by

at r=O 0 o =0,

as r--> o o = 1,

so that p, =-1 and region (3) therefore also no longer needs to be considered. At T = T the
behaviour thus becomes linear everywhere; the full problem for region (4) reads

1 [RN-1 ( 0
aT RN- 7 aR R ' 

at R=O, T<T,, RN-o = (N -) N-2OR _ (n - 1) So

T> To RN - 1 a R = 

asR-- o- 0,

at T=O0 = 0. (2.12)

The intermediate asymptotics of the problem can be characterised by the behaviour of
(2.12) close to T= Tco. As T--> T 0 it follows from (2.11) that we have

as R->O+ o(n - 1) [I(O)(n - 1)R2/12(N- 2)(Tco - T)]- (N - 2 )/2 (2.13)

and the asymptotic behaviour of (2.12) as T-> Tj0 takes the form

D - -A ln(T 0c - T) + AFi[RI(Tco - T)1 /2] for R = O[(Tco - T)112 ] , (2.14)

where the constant A is determined as follows.
From (2.12) and (2.13) it is clear that F(I) satisfies

d2F, IN-1 1 ]
d 2 [ 1 71] F1 = 

as 7 -->0+ F1 (- )A [I(0)(n - 1),122(N - 2)] - (N- 2 )/2

so that

N-1 e- 2/4 dF1 [n N-2 1 /A (2.15)
7 e q e /A - n. (2.15)

We must choose A so that F, does not blow up exponentially as 71 --> +c; hence

A N-2 i ] [ (0 ) /2 1r(N/ 2), (2.16)n - 2 VI
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and

N-1 2 4 dF = N- e-77 2/4 d (2.17)

from which it follows that

F,(7,)--2ln7, as7- +x. (2.18)

The constant of integration which arises on integrating (2.16) can only be determined by
deriving more terms in the expansion as T- Tc.

It follows from (2.14) and (2.17) that at T= Tc0

'0---2AlnR asR-->0+ (2.19)

with A given by (2.15). From this we may deduce that as T---> T+o

P0 - -A ln(T - Tco) + AF2[RI(T - Tco) 1 '2] for R = O[(T - Tc0 )1/ 2 ], (2.20)

where F2(71) satisfies

N-i 2/4 dF -1 e72/4 dF
-i' e*2/4 d = J N e?24 d, (2.21)

so that

F2(,/)--21n,7 as 7--->+x.

Finally, the asymptotic behaviour of (2.12) as T-- +o is given in the usual way by the
similarity solution

K -R2
/4T (2.22)

(Do TN/2 e (2.22)

where the constant K is given by

K = Q12N- F(N12) .

The following comments may be made about the preceding analysis.
(1) The extinction time is given by t=en-'Tc, so that in the limit e-->0 the high

concentration regions disappear instantaneously.
(2) Although the extinction time T depends only on the first moment of the initial

distribution, the details of I(r) determine s,(T) through (2.9) and therefore influence the
solution to (2.12). The precise form of I(r) becomes irrelevant only when the linear
late-stage behaviour (2.22) is established.

(3) In contrast to the one-dimensional case discussed in [2], linear diffusion plays an
important role for all T (see (2.12)) and takes over completely as soon as the extinction
of the high concentration regions occurs.
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3. N>2, n=l1

The need for a separate approach when n = 1 is evident from, for example, expression (2.9).
However, much of the analysis parallels that of the previous section.

We again write t = vT with v 1 to be determined; the four region asymptotic structure
which describes the behaviour of the solution to (1.3) for small E prior to the extinction of
the high concentration regions goes as follows.
(1) r<so(T).

We again have

u - I(r).

(2) r = s(T; v) + vz.
We now have

- o[uo - I(so)] = u° az

and the matching condition (2.4) is replaced by

In uo -l(so)oz as z--- + (3.1)

with s0 < 0.
(3) r > so(T).

The condition (3.1) motivates the introduction of

4 = -v In u (3.2)

and since u-- E as r- 0 this requires

v = 1/Iln(l/e) .

We then have

e +,> = V d[rNl ] (3.3)
at r r -

1 arl "r 

and the leading order conditions are

as r-- so(T) b6 -O,

as r -- > o 0 - 1 .

The left-hand side of (3.3) is exponentially small in v so that

Do = 1 - (rlso)- (N-2 ), (3.4)

and matching with (3.1) yields

sol(so)o = -(N - 2) , (3.5)

so s(T) is now given by
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fr(r)dr = (N-2)T, (3.6)

which is consistent with (1.7).
(4) r = O[e-1/2 In-12(1/e)].

To obtain a diffusive balance in the far-field we must now write

r = -1/2 In-1/2 (1/E)R , u = e[1 + E(N- 2)/2 lnN/2 (1/e)f]

to give at leading order

aT R N - 1 dR R ]N- R I

atR=O R = (N-2

as R---> 0 --> 0,

at T=O qo =0, (3.7)

where we have matched with (3.4). It now follows using (3.5) that

I RN-lo(R, T) dR = rN-lI(r) dr

which again expresses conservation of mass.
The leading order extinction time is now given by

Tc= (N - 2) frI(r) dr,

and, because

so(T) [ 2(N -) ) (To- T)] 1 / 2 as T

is again proportional to (TCo - T)1 2 , the structure for T close to T is similar to that for
N>2, n > 1; the differences are briefly noted in Appendix 3.

4. N=2, n>l1

The need for a different approach in this other borderline case is again evident from (2.9).
The asymptotics of (1.3) are rather more delicate in this case; this is perhaps to be expected
in view of the appearance of the In r term in (1.8).

We again write t = vT with v 1 and obtain the following.
(1) r < so(T).

In this region

u - I(r),
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as before.
(2) r = s(T; v) + vz.

We now recover (2.3), so the matching condition (2.4) again holds.

(3) r > s(T).
We write

U = Vl/ (n-1) 

and obtain

1/(n-1 a 1 a r_ a(p1
aT -r or ' r

At leading order we have

%Po = [a(T) n(rls,)]-" n - '), (4.1)

where a(T) remains to be determined. In contrast to Section 2 we cannot impose the
condition that p, -> 1 as r -, and the analysis departs from that of Section 2. Introducing
R = Sr, where 8 4 1 also remains to be determined, it follows from (4.1) that for R = 0(1)

u = [v/a In(l/)l (n -l 1+ O ln(1/)i ]]

Since we expect this to imply that

U e

we require that a be a constant and we may without loss of generality (by rescaling v) and
for convenience set a = 2.

Hence we require

v = 2e n - ln(1/8),

and to obtain a balance in the diffusion equation we need

62 = nl, .

Writing v = e"-ll/ it follows that /z is given by /i = In(./e), so that

en - I In(1/e),

and

s E1/2 In-1/ 2(1/E).

Matching (4.1) (with a = 2) and (2.4) implies that

2
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so so is given by

frlr) dr = T (4.3)

We are now in a position to discuss the final region.

(4) r = O[E-1/ 2 In1 2 (1/E)1.
As already indicated the appropriate rescalings are now

r = E-1/2 ln 2(1/e)R, u = e[1 + ln(l1/E) o] 

or, more precisely,

r=R , u=E [1 + 2 ln(1 /) I] 

yielding the leading order problem

ad = 1 [ d]
aT R R R aR 

84)o 2
as R=O R = n-i'

OR n-1 °

asR-m (o -0,

at T=0 0 =O, J (4.4)

where we have matched with (4.1). The conservation of mass result

fo Rio(R, T) dR = f rI(r) dr

follows from (4.3) and (4.4).
We observe that in the cases discussed in Sections 2 and 3 it is possible to determine so(T)

directly from (1.6) and (1.7) without needing to do all the matching; the behaviour is thus
controlled by the first moment constraint. A corresponding result for the current case is
expressed by the following combination of (1.4) and (1.9):

d fo 1-(0dt r In[ nIn (1/e)r](u(r, t) - e) dr = 1 [e - -'(0, t)]. (4.5)

It can be shown that the left-hand side is given at leading order by

-Z1 el-n dTf rI(r) dr

and (4.3) then follows.
The time of extinction of the high concentration region is given from (4.3) by

To = - 1 rI(r) dr, (4.6)
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with

so(T) [ (n (T - T) 1/2T-> T-,
° L- (n - )I(O) I co,

and, as in Section 2, the asymptotic structure described above holds until T is exponentially
close to Tc when the disappearance of the high concentration region occurs. The full leading
order problem in R = 0(1) may be written in the form

(DOo 1 0 0 1 
aT R aRIaR - ]

0400 2
at R=0, T<T R R =n-l'

T>Tco R -R = 0,

as R--* --> 0,

at T=O cb = (4 7)

In contrast to (2.12), so(T) does not appear in (4.7) so the solution is independent of the
details of I(r). The solution to (4.7) is easily derived for R > 0 in the form

2 e
- n 2/ 4

=D - 1 -I dr, T<Tco,

2 R/(T-TTO)1
/ 2

e-1
2 14

¢= n-1JRIT2 71 d, T>TO

For T < T we have

2
(D-- n-1 ln(R/T 2 ) + K as R-*O+ ,

where

2 /o (e -
2

/ 4 - H(1 -r))
K=n- 71

is a constant and H is the Heaviside step function. For T > To we have

4O(O, T) = n -_ 1 ln[T/(T - Tco) .

The behaviour for T - Tco for all R > 0 when T < T and for R > (T - TO) 1/2 when T > To
takes the form

2 [ 214
2 e e_7t 2 /4
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while for R = O[(T- TC0 ) 11 2], T > Tco we have

1 To 2 R/(T
-

T,
0 )

11
2 (e_ 2/4- 1) d

o° n-1 [ T- T1+ n-l o 

The intermediate asymptotic behaviour is thus similar to that for N> 2 and the main
differences are again indicated in Appendix 3.

The following comments compare and contrast the results for this borderline case with
those for N > 2 and for N < 2.
(1) For N < 2 the extinction time is determined by the total mass of the initial conditions (cf.

[21): for N > 2 it is determined by their first moment. For N = 2 the total mass and the
first moment are the same quantity which, as expected, determined the extinction time

(see (4.6)).
(2) As already noted, for N> 2 the details of the initial distribution remain relevant until

the behaviour (2.22) is established. By contrast, for N = 1 it follows from the results of
[2] that for T > T (in the notation of this paper) the leading order solution depends on
the initial conditions only through their total mass. The results of this section show that
the case N= 2 shares this characteristic of the one-dimensional case, the solution to
(4.7) depending on the initial conditions only through To which is given by (4.6)

5. The non-radially-symmetric problem

In this section we briefly outline the appropriate generalisations of our earlier results which
apply when I(x) in (1.2) is not radially-symmetric. For simplicity we restrict attention to the
range N > 2, n > 1. Prior to the extinction of the high concentration regions the asymptotic
structure again has four regions. We now locate the interior layer (region (2)) at

T = (x; e) ,

with I to be determined and with

e-eo(x) as E---0.

The appropriate time variable is again T= tI/n - '. The asymptotic behaviour may now be
described as follows.

(1) T < (x; e)
This is the immobile high concentration region in which

u I(x) .

IVt(s)I Z
(2) xs satisfies

where s satisfies

e(s; e) = T



370 J.R. King

with

[o(So) = T.

In this interior layer we have

uo- I(s0 ) = IV0(s0)lu dz (5.1)

(3) T > (x; e)
The appropriate variable is again p = u/e, and we define i by

i 1-n
t = n 1 'P -

At leading order we now have the following moving boundary problem, which determines to
as well as 4i,:

V2qo = 0 for T > o(x),

for T = (x) 0 = 0, V 0o V 0 = -I(x), (5.2)

as ix-- oC 0n- 1 ,

where we have matched with (5.1). We note that the outward normal velocity of the moving
boundary is 1/IVl I and that the required initial condition on the moving boundary is that on
T = 0(x) we have Ixl -* o as T-, 0+ (assuming I(x) > 0 for finite Ixl). The far-field behaviour
of cp takes the form

o 1 + ( -2)P(T)r -(N-2) as r- , (5.3)

where r = xl and where po(T) is determined by solving (5.2). Expression (5.3) provides the
matching condition for the final region.
(4) x = E-l/2 X, 0 = 1 + (N-2)/2z(.

The leading order problem is radially symmetric and takes the form

daoF 1 RN-l ao
aT RN- 1 aR L aR J '

at R = 0 R N - 1 a )at R=0 RNl' dR = -po(T),

as R--o c ->0,

at T=0 C 0=0,

where R = X . (5.4)

This asymptotic structure is valid until the extinction time, T = T,, of the high concen-
tration regions. It is expected that the behaviour close to extinction will usually be
radially-symmetric and will therefore be described by the results given earlier. Our radially-
symmetric results are also applicable close to the extinction time in the corresponding
outdiffusion problem discussed in [5].
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A useful reformulation of (5.2) is the following. Introducing

Wo = 4 0(x, T') dT

gives

V2 w 0 = I(x) for T> (x), 

for T=eo(x) w=O, Vw =0O,

T
asr-° n - 1 . (5.5)

This formulation permits the calculation of the location, x, and time, T,,, of extinction. It
follows from (5.5) that

T 1 1 wO(x, T) forT> 4(x)
(n - 1) (N -2))N T>eo() Ix N- 2 I() dVe = for T<eo(x)

where

w, = 2rN'2/F(NI2)

is the surface area of the N-dimensional unit sphere. This corresponds to the result

df 1 (N - 2) n-1 -n
dT N I l 5N-2 (( T)-E) dV6 - (n- ) N(1-e u (x, T)),

which is exact for (1.1) and (1.2) and holds for any x. Using the conditions on T = to(x) it is
then clear from (5.6) that xO is given by the algebraic equations

(s> - ) 1( {) dV = (5.7)

more precisely, x,, occurs at the global maximum of

feCERN Ix -2 I (a) dVI

(if there is more than one global maximum then extinction occurs simultaneously at more
than one point). It then follows that To is given by

T, (NERN -Xi N2 ) dV. (5.8)

In the radially symmetric case these reduce to x = 0 and

(n-2) (
rco= (N - 2) _- rI(r) dr,

as before.
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A further integral result, which follows from (5.2), is that

WNPo(T) = dT f ( ) I () dV,

and the conservation of mass result

toN fo RN-l(I)(R, T) dR= f o(g)I({) dVe

then follows from (5.4).
To summarise, the key part of the asymptotic formulation for T < Tc is the moving

boundary problem (5.2), which determines ft(x) and po(T) and therefore also dictates the
behaviour in the other regions. The extinction time T is determined by this moving
boundary problem and can be calculated from (5.7) and (5.8). For T > Tc the behaviour is
again described everywhere by radially-symmetric linear diffusion; the problem (5.4), which
is valid for T < T,o, is supplemented by the condition

atR=O, T>To RN - R =0,

as in (2.12)

6. Discussion

The main purpose of this section is to make some further comparisons with the one-
dimensional results of [2]. We note the following.
(1) In one dimension (1.1) has no finite mass solutions for n > 2. For N > 2 there are none
for n - 1. In the range 1 < n < 2/N for N > 2 there are finite mass solutions but they do not
conserve mass. The behaviour in this final range is therefore different and will be discussed
elsewhere.
(2) In [2] exact one-dimensional solutions were given for initial conditions of the form

att=O u=Q(x)+e, (6.1)

and it was shown in particular that for n > 2 the delta function persists for a finite time with
diminishing magnitude. We note that delta function persistence for (1.1) appears to have
been first observed in [6] where a particular initial-boundary value problem was discussed.
Writing

av
U =-

ax

the one-dimensional version of (1.1) can be transformed to

dv [v-" 2v (6.2)at ax a x2 '
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Delta function persistence for (1.1) is equivalent to the persistence of a discontinuity in the
solution to (6.2) and this type of effect was noted in [7].

In the limit in which the initial condition in (1.1) becomes

at t=0 u=QS(r)lrN- l+E,

this being the natural generalisation of (6.1), then for N>2 no diffusion occurs; the first
moment (1.5) is unbounded and the initial condition persists indefinitely. However, if for
N > 2 we consider the singular initial condition

att=O u=MB(r)lr+e, (6.3)

it then follows from (1.6) that for n > 1 the singularity at r = 0 again persists for a finite time
with

atr=0 u=Mo(1-tlen-Tc)(r)lr+e fort<e n-Tc, (6.4)

where Tc = (n - 1)Mo/(N - 2). The initial condition (6.3) has zero mass associated with it
for N > 2, so that

forr>0 u=e for all T,

and u-E vanishes everywhere at t = en- Tc .

It was shown in [2] that for the more general diffusion equation

Ou
at = V (D(u)Vu),

the criterion for delta function persistence in one dimension is that

f u'D(u') du' < x for large u. (6.5)

In [8] the expression (6.5) is derived as the condition for the persistence of a discontinuity in
the solution to

a t Lx a xx2

which is a generalisation of (6.2).
The corresponding result for persistence of a singularity of the form (6.4) for N > 2 is that

f D(u') du' < for largeu. (6.6)

This follows from the result that

dM
dt -(N - 2)(K(e) - K(u(O, t)),

where

K(u) = D(u') du',fu



374 J.R. King

which generalises (1.6).
For N = 2, n > 1 the analogous result concerns a singularity of the form

at t = 0 u = M 05(r)Ir ln(1/r)+ .

(3) Our final comment draws together some of the results of [2] and of this paper. As
already noted, in one dimension there are no finite mass solutions when n 2; in three
dimensions the corresponding criterion is that n - 1. The question of what happens in the
range 1 n < 2 for initial conditions which are (in some sense) almost one-dimensional is of
some interest. To illustrate this we consider the following example which, while slightly
artificial, is nevertheless motivated by the diffusion of an ion-implanted impurity in a
semiconductor. We consider the three-dimensional problem

au a [ _n au1 a [- au] a [ au
at ax u ax + y ay z u z '

as x2+y2 +z2-- > oo u-,> 

att=0 u=I(x,y,z/8)+E, (6.7)

with 1 < n < 2. We then assume that the initial conditions vary on the lengthscales x = 0(1),
y = 0(1), z = 0(8) and we take 1 and e <1.

A common simplification made in problems in which the initial conditions vary much more
rapidly in one direction than in the others is that the problem can be accurately approxi-
mated by a one-dimensional one, which in this case would take the form

au a[ -na]

at a a il'
as lji2- o u-O,
at =0 u =I(x,y,i), (6.8)

where 2 = z/8, i = t/82 ; x and y appear in (6.8) only as parameters.
Our purpose here is to indicate that this simplification may not necessarily be valid, so that

care must be taken in making the approximation of one-dimensional behaviour. We
distinguish the following three cases.
(i) < E (n - 1

) / 2

In this case the timescale i = 0(1) is much shorter than T= 0(1) and (6.8) provides a
valid approximation to (6.7) for t^= 0(1) wherever u = 0(1). On the timescale i = 0(1) the
motion of the moving boundary describing the erosion of the high concentration region is
slow.
(ii) > E( n - l ) /2

Now T= 0(1) is the shortest timescale and the high concentration region is eroded before
significant one-dimensional diffusion can occur; the moving boundary discussed in Section 5
collapses at leading order from a surface T = (x, y, z) onto a curve of the form

z=O, T= e0 (x,y)

but the behaviour is largely as described in Section 5 (the condition on z = 0, T < (x, y) is
that q0 = ).
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(iii) = O[e (n
-1

) /2 ]

In this special case the timescales i= 0(1) and T= 0(1) are of the same order.
One-dimensional diffusion in the -idirection and the erosion (in the (x, y) plane) of the high
concentration region now occur simultaneously. We omit details of the coupling between
these effects, it being more complicated than in the other cases.

We may summarise this point by noting that, for problems such as (6.7), the initial
behaviour may be dominated either by one-dimensional or by three-dimensional effects,
depending critically on the relationship between and .
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Appendix 1. The finite domain case

For simplicity we again restrict attention to the range N > 2, n > 1. The problem we consider
in this appendix takes the form

au
at =V (u-nVu) for xfE,

for x E a n uVu = O ,

at T=O u = (x) (A1.1)

where fl C RN is a bounded region, i denotes the unit outward normal to an, and we take

IxI = (1/e) for xE al, where E 1. This is the appropriate generalisation of the one-
dimensional finite domain problem discussed in [2]. We take the limit --- 0 with

RN I(x) dV

taken to be finite. The asymptotic structure is made up of four regions and we must again
consider a short timescale T = t/v with v 1 to be determined. We take the interior layer
which separates regions (1) and (3) to occur close to T= t(x; E) and we have the following:
(1) For T < e(x; e)
we have

u -I(x).

(2) x = s(T; e) - (n-l) V(s)

with

£(s; ) = T.
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We again have

o - I(sO) = IV£0(so)luon uz

(3) For T > e(x; e),
writing

U =- 1l/(n-1) 

and

=n0 l 1 1-n

gives

V2 q = for T > to(x),

for T= to(x) r 0o=O, VO tO =-I(x),

as r---> o n1 0n(T)oO(T)-(N-2) po(T)r(N (A1.2)

where %o and pO, as well as t o and 6o,, are unknowns; we have

- (T) + (N - 2) p(T)r-(N-2 ) as r- .

(4) x = X/E, q = (T; E) + eN-2I,

where or(T; E)= o-(T). The asymptotic structure now departs from that of Section 5. In
order to obtain a balance we require that v be given by

V = 
N ( n - 1)

and we then have

a, °' =V2° 0

as R--->O+
o (N- 2) po(T)R - (N- 2 )

for X E1 fi V(DO = O; (A1.3)

equivalently we have the flux condition

as R = R N -p(T).

The solution to (A1.3) is specified only to within an arbitrary additive function of T which
cannot be determined by leading order matching, but which may be absorbed into or(T; e) at
O(EN-2).

The problems (A1.2) and (A1.3) are coupled through the unknowns ruo(T) and po(T), but



Multidimensional singular diffusion 377

they may be decoupled as follows. From (A1.3) we may deduce that

Vcro o= WNPo, (A1.4)

where V is the volume of 1f (with respect to the variables X). Using (A1.4) we may eliminate
po from (A1.2), which may then in principle be solved to determine q0, t0 and co. The
problem (A1.2) may then be solved to give b0.

The conservation of mass expression

Vo(T) = (x) dV (A1.5)

follows from (A1.2) and (A1.4). An important difference from the case discussed in Section
5 is that it does not seem possible to determine the extinction time of the high concentration
regions without calculating the evolution of i0 for all earlier T. An analysis similar to that of
Section 5 does show, however, that the leading order location of extinction is again given by
(5.7). We in general expect the solution to become radially-symmetric as the extinction time
T = Tc is approached, an analysis of which requires consideration of the timescale T = T, +
O(eN- 2) of which we omit details. It is clear from (A1.5) that

VoO(TcO) = fR NI(x) dV ,

and for T > Tc we have

u eNao(Tco) for all x.

We note that the extinction time t = eN(n"-)Tc again goes to zero as e -- 0; in this limit the
material instantaneously diffuses out to infinity. For e > 0 the extent of diffusion is limited by
the finite size of the domain; sufficiently close to the surface we have

u - eNao(T)

which plays the role of a (time-dependent) background concentration.
The analysis of this appendix indicates, in particular, that the numerical solution of (1.1)

on artificially truncated domains may lead to spurious results.

Appendix 2. Multidimensional indiffusion

The purpose of this appendix is to consider the problem of indiffusion (sorption) into a finite
region, whereby the diffusing material enters through the surface rather than being present
in some initial distribution. The relevant model is

at =V(D(u)Vu) for xE l,

forxEafQ u=l, (A2.1)

att=0 u=O,

and we consider the case in which D(u) = u-". The practical importance of such problems is
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indicated in, for example, [9], which discusses the case in which the diffusivity D(u) is an
increasing function of u. Here we discuss the full range of n in order to examine the
differences between increasing (n < 0) and decreasing (n > 0) diffusivities.

The large time behaviour of (A2.1) is clearly given by

u---> 1 as t--> +o

for any D(u); here we consider the small time behaviour, this being the limit in which the
solution depends most dramatically on the value of n. The cases n < 2, n > 2 and n = 2 must
be discussed separately; the first of these has a number of subcases. In this appendix we
define v to be the inward normal distance from a point on the boundary afn.

(a) n<2
For small t we have

U-g(7) for v = O(t1 12 ), (A2.2)

where 7 = vltl/2 and where g is given by

1dg d[ d dg]

2 7 d7 d -- L 7-l
at 7 = 0 g=l,

as7- + g=0. I (A2.3)

The behaviour elsewhere depends on whether n is negative or positive.
(i) n<0

For negative n the solution has compact support, so that the solution to (A2.3) satisfies
g = 0 for 7 >3 70 for some finite 70. Hence for v sufficiently large we have

u=O.

The limiting case discussed in [9] in which the diffusivity increases abruptly near u = 1
corresponds to the limit n- -cc here (see [10], [51). Further analytical progress is possible in
this case for t = 0(1) and such results are used in [9] to provide an upper bound on the
uptake rate defined by

m(t) = fI u(x, t) dV . (A2.4)

(ii) O<n<2
In this range the formulation (A2.2) holds only in the boundary layer 7 = 0(1). It follows

from (A2.3) that

n -/n
g- 2(2 - n) 7 as7 - >+

so that the behaviour elsewhere is given by a separable solution

U - tlnh(X) (A2.5)
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with

n h =V (h Vh),
(A2.6)

as v->O h--+; (A2.6)

more precisely we have

[ /n
h- [ 2 (2 ) v as v-O+ . (A2.7)

(iii) n = 0
In the case of linear diffusion we have

g() = erfc[ 2]1

and outside the boundary layer u is exponentially small. We write

In u- -t -f(x) as t--- + for xa ,

which gives

f= IVfl2. (A2.8)

This first order equation is to be solved subject to the initial condition

2

as v-O + f-

On writing f = F2 we obtain the eikonal equation

IVFI2= 1,

at v=0 F=O.

The corresponding characteristic projections will cross inside l, so the required solution to
(A2.8) will contain discontinuities in Vf. At these discontinuities a rescaling is required
whereby the second spatial derivative reappears at leading order; such an analysis is
straightforward and we omit it.

We now turn to the case n < 2 in which (A2.3) has no solution and a different approach is
needed.

(b) n<2
For small t the expression (A2.5) again holds outside the boundary layer, with h given by

(A2.6). The expression (A2.7) is no longer valid however; now we have

h -[K(x)ia]- /( n-' ) as v-O + for xEal,

where K is determined by solving (A2.6). The leading order boundary layer behaviour is
now quasi-steady with

u -[1 + K(x)v/t(n-1)n] - l(" - l ) for v = O[t(n-l)/n], xE an.
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The limiting case n --> + is that in which the diffusivity decreases rapidly as u increases
from zero, so that a consideration of this limit provides complementary results to those of

[9]. Writing

h =f-In

we obtain at leading order as n --> + the linear problem

V2f0 = -1,

for x Ea f 0=0. (A2.9)

Although it is valid only for t 1, if follows from (A2.5) that for large n this formulation
nevertheless holds until u is close to one everywhere, and it therefore provides a good
description of the sorption process through most of its development.

(c) n = 2
Expressions (A2.5) and (A2.6) again hold, but now we have

h- l vln'/2 (1/v) as v->O+ ,

and the boundary layer is given by

u - [1 + v/21/2t / 2 ln-1 /2 (1/t)]-1 for v = O[t/2 ln-12 (1/t)] .

We may summarise our results by providing expressions for the small time behaviour of

the uptake rate (A2.4), which can also be determined from

dm r au
dt Jan dS

with m(0) =0. We have for t 1l:
(a) n<2

m(t) {J g(-q) do S} t 2

which is equivalent to

S being the surface area of fl.

(b) n>2

m(t) - {f h(x) dV}t ,

i.e.

m(t) -{ n an K(x) dS} t.
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(c) n = 2

m(t) - 2 2St1 /2 ln1/ 2(1/t)

Limiting cases are as follows

n- -- coo m(t) (2/-n)1/2St1/ 2 ;

this follows because g - (1 - /0) - / as n- -o for i7 <70, with 70 - (2/-n)1 12 ;

n-> +o m(t) Vtlln ,

where V is the volume of Q1. This follows because h - 1 for f = 0(1). It is noteworthy that
the former is proportional to the surface area of il and the latter to its volume.

In each of the limits n - -oo and n - +oo the diffusivity D(u) is a very rapidly varying
function of u. Similar behaviour to that described by these two limits can occur for more
general diffusivities D(u). To establish a criterion for such behaviour we write w = D(u) in
(A2.1) to yield the equation

at wV 2w + (1- DD"/D' 2)IVwl, (A2.10)

where ' denotes dldu. If the condition

I1 - DD"/D'2 1 1 (A2.11)

is satisfied then the final term of (A2.10) is negligible; if, for example, we seek a separable
solution

w - t- f(x)

in this limit then we recover (A2.9).
If we write

D(u) = A(a) exp(t(u)/a) (A2.12)

for some functions A and T, where a is a constant, then we have

1 - DD"/D'2 = -axIt/q t' 2

so that (A2.11) is valid if D(u) takes the form (A2.12) with a small. This implies that D is a
rapidly varying function of u; in the case D(u) = u-" with Inl large we can write a = 1/n,
A = 1 and P(u) = -In u, but it is evident that the form (A2.12) is much more general. The
case of a 'delta-function diffusivity' [11],

D(u) = (u - u)

for some constant u, can be derived from (A2.12) in the limit a --> 0 with appropriate forms
for A and it.
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Appendix 3. Intermediate asymptotics

N>2, n>1

This appendix concerns the intermediate asymptotic timescales mentioned in Section 2.
These describe the behaviour close to the extinction time of the high concentration regions.
Two timescales need to be discussed for N > 2, n > 1. Guided by results such as (2.14) we
first introduce

5 = rl(T - t) 1/2 , T =-ln(T - T ) ,

to give

au 1 au n-1 1 a [ N-l-n au

aT+ 2e =u ag_ u

The first of the timescales is given by T* = 0(1), where

T = E -(N-2)/2T* (A3.1)

so that T - T is exponentially small in , and the asymptotic structure is made up of six
regions.
(1) < Wo(T*) where o remains to be determined.

Here

u - I(O).

(2) = (r*; E) + enl with Wo - 0(r*) as - 0O.
Then

1 ,au o
2 O[Uo - (0)] = Uon a0

so that

U0o L2 (n - I)I(0)0oo ] Jas -- +o. (A3.2)

(3) 5 > Wo(T*), u = E.
Here

po = Bo(r*)[1 - (/Wo)-(N- 2)]- /(n
- ) , (A3.3)

where Bo is given by matching with (A3.2), so that

2 2(N - 2) (A34)
°0 (n - 1)I(0) 

(4) = e -1/2 * , ¢ = B(T*; e) + e(N-2)/2 D*(*, T*) with B B(T *) as ---> 0.
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Then

1 * /1 a *N-1 a
B, + 2 71 dq* 71*N-1 aq * [a7 ai* 

(the balance of these three terms identifies (A3.1) as the required timescale) where

dB0
Bo = dT*

Hence (matching with (A3.3))

*N-1 - B',7.
2

/4 Aco _N - 2 N-2-

e17 e 0 ]* [ i _ 1 Bo 2 + BOB 7*N-1 e(-B 1*2/4 d0. *

(T is determined only up to an arbitrary additive function of T* which cannot be
determined by matching to this order but which can be absorbed into B at O(E(N-2)/2)).

Since we require that 'F does not blow up exponentially as -- > +0, we therefore have

N[-2] WN2 = 2 NIF[ ]B l1-n(N-2)/2 1B (A3.5)

and we can take

Ot = BoF[Bo/27*] ,

where F(, 7) is given by (2.17).
Using (A3.4) and (A3.5) we then find that

[ 2(N - 2) ]1/2
(O)(7 ) (n - 1)I()] [1 - T*/c*]

(n - 1) /( N- 2 )

BO(T* ) = [1 - 7*'7* ] /N-2) (A3.6)

where *o0 = 2/(N - 2)A and A is given by (2.16).

(5) A = E(N-2 )/21n 7 *.
Here

0% 1 0o%
* + 2 a ,

with

at A = p = B(r*)

at T* = o = 1,

giving

P0 =Bo(* - 2A) T* > 2A, (A3.7)
% ~ ~ = T* < 2A.

(6) R = 0(1).
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Because

7* - 2A = -2
( N - 2 )

/
2 InR,

this region separates the two ranges in (A3.7). Here we have

p 1 + E(N-
2
)

12
(o(R, Tc ) ,

where 0 is the solution of (2.10). Using (2.19) and (A3.6) this is easily seen to match with

(A3.7).
When * = 7*o + O(e(N-2)12) it can be seen that regions (1)-(4) above merge into one, so

the second timescale we need to discuss has

= E-(N- 2
)/

2
T*(E) + where T0 as E

and we write

* n= /2 -
71 =e 1

and introduce

= 7, e -/2 = -(n-1)/2 exp e-(N-2)12 * |

T= -e = exp[ -(N- 2 )/2T*](T- T), (A3.8)

to give

au o 1 a [-N-l -n aul 
aT ? N-1 d [ v

-N-1 -n auO
at =0 r U N-U = 0 J (A3.9)

as r- + uo -- [2 In r*o]-2(N-2 ) 

The far-field condition in (A3.9) follows from matching with (A3.7). The initial conditions
on (A3.9) hold as T-- -o and can be determined by matching into the timescale 7* = 0(1).
It is worth stressing that the solution to (A3.9) is of infinite mass.

The behaviour of (A3.9) as T--- +oo takes the form

U - ln-2/(N-2)T 7* 2/(N-2) + ln-N/(N-
2

) T ,*N (N-
2
)F2 [T*, /(N-

2
)Fil/ 

2
lnn/(N-

2
) T]

for F= O[T' / 2 lnn(N -2 ) T], (A3.10)

uO [21n FrTc*O]- 21(N-2 ) for In = O(ln T) with In F/ln T ->, (A3.11)

where F2(q) is given by (2.21). The expressions (A3.10) and (2.20) can be shown to match.
The significance of the timescale T = 0(1) may be indicated as follows. From Section 2 we

have that

r0 { e) for T > T,.
{e ) rTT
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For T = 0(1), however, the peak concentration makes a rapid transition between these two
constants. The time dependence of this transition can be characterised by (A3.10), and
(A3.11) indicates much of the spatial profile. The relevant intermediate asymptotic
timescale, given by (A3.8), is exponentially short in e, in contrast to the one-dimensional
case in which it is algebraically short [2].

We now indicate the main differences from the structure outlined above which occur in the
intermediate asymptotic behaviour of the two borderline cases.

N>2, n=1

In this case (A3.1) is replaced by

= -(N-2)/2 ln-N/2(1/e)r*

and much of the asymptotic structure for T* = 0(1) is as described above. In this case the
additional timescale

= -ln(1 - r*/T*)/ln(1/e) with (N - 2)/2 > + > 0

also needs to be considered, where

T*(e) Tc*0= 2NF []r[I(0)2(N - 2)](N- 2 )12 /(N - 2)2.

On this timescale we find that the equivalent to region (3) above has ij = 0(1) where

1 = 
-1 / 2

ln-2(l
* and 77* = 1/2 el n(l/E)C(i; e)/2

with

u - e-Iln(1/)C[1 + E(N
- 2

)/
2 lnN/2

(1/e) eln(l/))] ·

Matching gives

2 i 1 N 2i1
C(; e)- N-2 + ln(1/e) N - ln N-2 '

oo 2(N -2) [ 2 (A3.12)

and

N° - 2)*co

where F1(77 ) is again given by (2.17).
The remaining timescale is given by T = 0(1) with

= exp[ -(N-2 )
/2 n-N'2(1/e)r](T - T),

r= lnl2(1/e) exp - ( N - 2 )
1
2

ln-N/2(lle)T* rF= In' 1E exp E C
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and, using (A3.12), it turns out that in (A3.9) the far-field condition is replaced by

as --> +-c u - [2 In / 0*]-2/(N- 2)[2 In In F/(N - 2)] - N l(N - 2 )

N=2, n>1

The expression (A3.1) is now replaced by

T = ln(1/e)T* .

A further timescale also needs to be considered in this case, namely

= */ln(l/E).

The equivalent to region (3) now has 0 = 0(1) where

= -1/2 In1/ 2(1/E)* and q* = en/2en In(l/e)C(r; F)/2

with

u-e n(l"/)C[1 + /lIn(1/E)].

We find that for = 0(1)

C - [1 - 2/(n - 1)11" 2

In - - (n -11)[1- [1- 2Tl(n - 1)112] In(l/E)

and

8, = -21n l(n - 1)[1 - 2/r(n - 1)]1' 2

The remaining timescale now has

T= exp(ln2(1/e)ci,)(T- Tc),

r= -(n-l)/2 In'2(/E) exp[in 2(1/E)r,

where

(·) -2 (n - 1),

and in (A3.9) the far-field condition becomes

as --- +oo In u0 - -2 1n1 2r/(n - 1)1/2;

the determination of the pre-exponential term in the far-field expression for u0 requires
higher order matching. The intermediate asymptotic timescale in this case is thus exponen-
tially short in In2(1/E).
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